En este grupo En todos

Grupo de Neurociencias



Los 6 Super - Neurotransmisores del Cerebro

Fanny Vanessa
Ingeniería industrial universidad yaca...
Escrito por Fanny Vanessa Verano Hidalgo
el 26/08/2010

Se llaman transmisores a las sustancias químicas que se encargan de transmitir la información entre las distintas partes del cuerpo. Las hormonas, por ejemplo, son transmisores que viajan a través de la sangre. Y se llama neurotransmisores a los transmisores que conducen los mensajes a distintas zonas del sistema nervioso (cerebro, médula espinal y nervios).



Pues bien, los neurotransmisores más "importantes" son los del cerebro por el control que ejercen sobre las neuronas. Y por eso son también los más estudiados. Es el caso de:


-La acetilcolina. Este neurotransmisor regula la capacidad para retener una información, almacenarla y recuperarla en el momento necesario. Cuando el sistema que utiliza la acetilcolina se ve perturbado aparecen problemas de memoria y hasta, en casos extremos, demencia senil.


-La dopamina. Crea un "terreno favorable" a la búsqueda del placer y de las emociones así como al estado de alerta. Potencia también el deseo sexual. Al contrario, cuando su síntesis o liberación se dificulta puede aparecer desmotivación e, incluso, depresión.


-La noradrenalina se encarga de crear un terreno favorable a la atención, el aprendizaje, la sociabilidad, la sensibilidad frente a las señales emocionales y el deseo sexual. Al contrario, cuando la síntesis o la liberación de noradrenalina se ve perturbada aparece la desmotivación, la depresión, la pérdida de libido y la reclusión en uno mismo.


-La serotonina. Sintetizada por ciertas neuronas a partir de un aminoácido, el triptófano, se encuentra en la composición de las proteínas alimenticias. Juega un papel importante en la coagulación de la sangre, la aparición del sueño y la sensibilidad a las migrañas. El cerebro la utiliza para fabricar una conocida hormona: la melatonina.


-El Ácido gamma-aminobutírico o GABA. Se sintetiza a partir del ácido glutámico y es el neurotransmisor más extendido en el cerebro. Está implicado en ciertas etapas de la memorización siendo un neurotransmisor inhibidor, es decir, que frena la transmisión de las señales nerviosas. Sin él las neuronas podrían -literalmente- "embalarse" transmitiéndonos las señales cada vez más deprisa hasta agotar el sistema. El GABA permite mantener los sistemas bajo control. Su presencia favorece la relajación. Cuando los niveles de este neurotransmisor son bajos hay dificultad para conciliar el sueño y aparece la ansiedad.


-La adrenalina. Es un neurotransmisor que nos permite reaccionar en las situaciones de estrés. Las tasas elevadas de adrenalina en sangre conducen a la fatiga, a la falta de atención, al insomnio, a la ansiedad y, en algunos casos, a la depresión.



Efectos sobre el estado de ánimo El alto o bajo nivel de los neurotransmisores tiene una notable influencia sobre las funciones mentales, el comportamiento y el humor. Veamos esquemáticamente algunos de esos efectos:



-Los niveles altos de serotonina producen calma, paciencia, control de uno mismo, sociabilidad, adaptabilidad y humor estable. Los niveles bajos, en cambio, hiperactividad, agresividad, impulsividad, fluctuaciones del humor, irritabilidad, ansiedad, insomnio, depresión, migraña, dependencia (drogas, alcohol) y bulimia.


-Los niveles altos de dopamina se relacionan con buen humor, espíritu de iniciativa, motivación y deseo sexual. Los niveles bajos con depresión, hiperactividad, desmotivación, indecisión y descenso de la libido.


-Los niveles altos de adrenalina llevan a un claro estado de alerta. Un nivel bajo al decaimiento y
la depresión.


-Los niveles altos de noradrenalina dan facilidad emocional de la memoria, vigilancia y deseo sexual. Un nivel bajo provoca falta de atención, escasa capacidad de concentración y memorización, depresión y descenso de la libido.


-Los niveles altos de GABA potencian la relajación, el estado sedado, el sueño y una buena memorización. Y un nivel bajo, ansiedad, manías y ataques de pánico.


-Los niveles altos de acetilcolina potencian la memoria, la concentración y la capacidad de aprendizaje. Un bajo nivel provoca, por el contrario, la pérdida de memoria, de concentración y de aprendiza je.

Fanny Vanessa Verano Hidalgo
Ingeniería industrial universidad yaca...
Escrito por Fanny Vanessa Verano Hidalgo
el 26/08/2010

Neurotransmisores

Los neurotransmisores son las sustancias químicas que se encargan de la transmisión de las señales desde una neurona hasta la siguiente a través de las sinapsis. También se encuentran en la terminal axónica de las neuronas motoras, donde estimulan las fibras musculares para contraerlas. Ellos y sus parientes cercanos son producidos en algunas glándulas como las glándulas pituitaria y adrenal. En este capítulo, revisaremos algunos de los neurotransmisores más significativos.


La acetilcolina fue el primer neurotransmisor en ser descubierto. Fue aislado en 1921 por in biólogo alemán llamado Otto Loewi, quien ganó posteriormente el premio Nobel por su trabajo. La acetilcolina tiene muchas funciones: es la responsable de mucha de la estimulación de los músculos, incluyendo los músculos del sistema gastro-intestinal. También se encuentra en neuronas sensoriales y en el sistema nervioso autónomo, y participa en la programación del sueño REM.


El famoso veneno botulina funciona bloqueando la acetilcolina, causando parálisis. El derivado de la botulina llamado botox se usa por muchas personas para eliminar temporalmente las arrugas – una triste crónica de nuestro tiempo, diría yo. Haciendo un comentario más serio, existe un vínculo entre la acetilcolina y la enfermedad de Alzheimer: hay una pérdida de cerca de un 90 % de la acetilcolina en los cerebros de personas que sufren de esta enfermedad debilitante.


En 1946, otro biólogo alemán cuyo nombre era von Euler, descubrió la norepinefrina (antes llamada noradrenalina). La norepinefrina esta fuertemente asociada con la puesta en “alerta máxima” de nuestro sistema nervioso. Es prevalente en el sistema nervioso simpático, e incrementa la tasa cardiaca y la presión sanguínea. Nuestras glándulas adrenales la liberan en el torrente sanguíneo, junto con su pariente la epinefrina. Es también importante para la formación de memorias.


El estrés tiende a agotar nuestro almacén de adrenalina, mientras que el ejercicio tiende a incrementarlo. Las anfetaminas (“speed”) funcionan causando la liberación de norepinefrina.


Otro familiar de la norepinefrina y la epinefrina es la dopamina. Es un neurotransmisor inhibitorio, lo cual significa que cuando encuentra su camino a sus receptores, bloquea la tendencia de esa neurona a disparar. La dopamina esta fuertemente asociada con los mecanismos de recompensa en el cerebro. Las drogas como la cocaína, el opio, la heroína, y el alcohol promueven la liberación de dopamina, ¡Al igual que lo hace la nicotina!


La grave enfermedad mental llamada esquizofrenia, se ha demostrado que implica cantidades excesivas de dopamina en los lóbulos frontales, y las drogas que bloquean la dopamina son usadas para ayudar a los esquizofrénicos. Por otro lado, demasiada poca dopamina en las áreas motoras del cerebro es responsable de la enfermedad de Parkinson, la cual implica temblores corporales incontrolables.


En 1950, Eugene Roberts y J. Awapara descubrieron el GABA (ácido gamma aminobutírico), otro tipo de neurotransmisor inhibitorio. El GABA actúa como un freno del los neurotransmisores excitatorios que llevan a la ansiedad. La gente con poco GABA tiende a sufrir de trastornos de la ansiedad, y los medicamentos como el Valium funcionan aumentando los efectos del GABA. Si el GABA está ausente en algunas partes del cerebro, se produce la epilepsia.


El glutamato es un pariente excitatorio del GABA. Es el neurotransmisor más común en el sistema nervioso central, y es especialmente importante en relación con la memoria. Curiosamente, el glutamato es realmente tóxico para las neuronas, y un exceso las mataría. Algunas veces el daño cerebral o un golpe pueden llevar a un exceso de este y terminar con muchas más células cerebrales muriendo que el propio trauma. La ALS, más comúnmente conocida como enfermedad de Lou Gehrig, está provocada por una producción excesiva de glutamato.


Se ha encontrado que la serotonina está íntimamente relacionada con la emoción y el estado de ánimo. Demasiada poca serotonina se ha mostrado que lleva a la depresión, problemas con el control de la ira, el desorden obsesivo-compulsivo , y el suicidio. Demasiada poca también lleva a un incremento del apetito por los carbohidratos (comidas rica en almidón) y problemas con el sueño, lo cual también esta asociado con la depresión y otros problemas emocionales.


El Prozac y otros medicamentos ayudan a la gente con depresión previniendo que las neuronas aspiren el exceso de serotonina, por lo que hay más flotando en las sinapsis. Es interesante que un poco de leche caliente antes de acostarse también incrementa los niveles de serotonina. Como mama puede haberte dicho, te ayuda a dormir. La serotonina es un derivado del triptófano, que se encuentra en la leche. ¡El calor es solo por comodidad!


Por otra parte, la serotonina también juega un papel en la percepción. Los alucinógenos como el LSD funcionan adhiriéndose a los receptores de serotonina en las vías perceptivas.


En 1973, Solomon Snyder y Candace Pert del John´s Hopkins descubrieron la endorfina. La endorfina es el nombre corto de “morfina endógena” (presente en la heroína). Es estructuralmente muy similar a los opioides (opio, morfina, heroína, etc. ) y tiene funciones similares: esta implicada en la reducción del dolor y en el placer, y las drogas opiaceas funcionan adhiriéndose a los receptores de endorfinas. Es también el neurotransmisor que ayuda a los osos y otros animales a hibernar. Considera esto: La heroína enlentece la tasa cardiaca, la respiración, y el metabolismo en general – exactamente lo que necesitarías para hibernar. Por supuesto, algunas veces la heroína enlentece totalmente: Hibernación permanente.

Fanny Vanessa Verano Hidalgo
Ingeniería industrial universidad yaca...
Escrito por Fanny Vanessa Verano Hidalgo
el 26/08/2010

La célula nerviosa (neurona) tiene dos funciones principales, la propagación del potencial de acción (impulso o señal nerviosa) a través del axón y su transmisión a otras neuronas o a células efectoras para inducir una respuesta. Las células efectoras incluyen el músculo esquelético y cardíaco y las glándulas exocrinas y endocrinas reguladas por el sistema nervioso. La conducción de un impulso a través del axón es un fenómeno eléctrico causado por el intercambio de iones Na+ y K+ a lo largo de la membrana. En cambio, la trasmisión del impulso de una neurona a otra o a una célula efectora no neuronal depende de la acción de neurotransmisores (NT) específicos sobre receptores también específicos.

Cada neurona individual genera un PA idéntico después de cada estímulo y lo conduce a una velocidad fija a lo largo del axón. La velocidad depende del diámetro axonal y del grado de mielinización. En las fibras mielínicas la velocidad en metros/segundo (m/s) es aproximadamente 3,7veces su diámetro (m); por ejemplo, para una fibra mielinizada grande (20 m) la velocidad es de unos 75m/s. En las fibras amielínicas, con diámetro entre 1 y 4 m, la velocidad es de 1 a 4 m/s.

Una neurona determinada recibe gran cantidad de estímulos de forma simultánea, positivos y negativos, de otras neuronas y los integra en varios patrones de impulsos diferentes. Éstos viajan a través del axón hasta la siguiente sinapsis. Una vez iniciada la propagación axonal del impulso nervioso, ciertas drogas o toxinas pueden modificar la cantidad de NT liberada por el axón terminal. Por ejemplo, la toxina botulínica bloquea la liberación de acetilcolina. Otras sustancias químicas influyen en la neurotransmisión modificando el receptor; en la miastenia grave los anticuerpos bloquean los receptores nicotínicos de acetilcolina.

Las sinapsis se establecen entre neurona y neurona y, en la periferia, entre una neurona y un efector (p. Ej. , el músculo); en el SNC existe una disposición más compleja. La conexión funcional entre dos neuronas puede establecerse entre el axón y el cuerpo celular, entre el axón y la dendrita (la zona receptiva de la neurona), entre un cuerpo celular y otro o entre una dendrita y otra. La neurotransmisión puede aumentar o disminuir para generar una función o para responder a los cambios fisiológicos. Muchos trastornos neurológicos y psiquiátricos son debidos a un aumento o disminución de la actividad de determinados NT y muchas drogas pueden modificarla; algunas (p. Ej. , alucinógenos) producen efectos adversos y otras (p. Ej. , antipsicóticos) pueden corregir algunas disfunciones patológicas.

El desarrollo y la supervivencia de las células del sistema nervioso dependen de proteínas específicas, como el factor de crecimiento nervioso, el factor neurotrófico cerebral y la neurotrofina 3.

Fanny Vanessa Verano Hidalgo
Ingeniería industrial universidad yaca...
Escrito por Fanny Vanessa Verano Hidalgo
el 26/08/2010

Principios básicos de la neurotransmisión

El cuerpo neuronal produce ciertas enzimas que están implicadas en la síntesis de la mayoría de los NT. Estas enzimas actúan sobre determinadas moléculas precursoras captadas por la neurona para formar el correspondiente NT. Éste se almacena en la terminación nerviosa dentro de vesículas (v. Fig. 166-1). El contenido de NT en cada vesícula (generalmente varios millares de moléculas) es cuántico. Algunas moléculas neurotransmisoras se liberan de forma constante en la terminación, pero en cantidad insuficiente para producir una respuesta fisiológica significativa. Un PA que alcanza la terminación puede activar una corriente de calcio y precipitar simultáneamente la liberación del NT desde las vesículas mediante la fusión de la membrana de las mismas a la de la terminación neuronal. Así, las moléculas del NT son expulsadas a la hendidura sináptica mediante exocitosis.


La cantidad de NT en las terminaciones se mantiene relativamente constante e independiente de la actividad nerviosa mediante una regulación estrecha de su síntesis. Este control varía de unas neuronas a otras y depende de la modificación en la captación de sus precursores y de la actividad enzimática encargada de su formación y catabolismo. La estimulación o el bloqueo de los receptores postsinápticos pueden aumentar o disminuir la síntesis presináptica del NT.

Los NT difunden a través de la hendidura sináptica, se unen inmediatamente a sus receptores y los activan induciendo una respuesta fisiológica. Dependiendo del receptor, la respuesta puede ser excitatoria (produciendo el inicio de un nuevo PA) o inhibitoria (frenando el desarrollo de un nuevo PA).

La interacción NT-receptor debe concluir también de forma inmediata para que el mismo receptor pueda ser activado repetidamente. Para ello, el NT es captado rápidamente por la terminación postsináptica mediante un proceso activo (recaptación) y es destruido por enzimas próximas a los receptores, o bien difunde en la zona adyacente.

Las alteraciones de la síntesis, el almacenamiento, la liberación o la degradación de los NT, o el cambio en el número o actividad de los receptores, pueden afectar a la neurotransmisión y producir ciertos trastornos clínicos


Transporte de los neurotransmisores

Existen dos tipos de transportadores de los NT esenciales para la neurotransmisión. El transportador de recaptación, localizado en las neuronas presinápticas y en las células plasmáticas, bombea los NT desde el espacio extracelular hacia elinterior de la célula. Repone el abastecimiento de NT, ayuda a concluir su acción y, en el caso del glutamato, mantiene sus niveles por debajo del umbral tóxico. La energía necesaria para este bombeo del NT proviene del ATP. El otro tipo de transportador localizado en la membrana de las vesículas concentra el NT en las mismas para su posterior exocitosis. Estos transportadores son activados por el pH citoplasmático y el gradiente de voltaje a través de la membrana vesicular. Durante la anoxia y la isquemia cambia el gradiente iónico transmembrana, y el glutamato se transporta desde las vesículas hasta el citoplasma, aumentando su concentración hasta niveles potencialmente tóxicos.

Los sistemas de segundo mensajero consisten en proteínas G reguladoras y proteínas catalíticas (p. Ej. , adenilato-ciclasa, fosfolipasa C) que se unen a los receptores y a los efectores. El segundo mensajero puede ser el desencadenante de una reacción en cadena o el blanco de una vía reguladora (p. Ej. , el calcio;.

Fanny Vanessa Verano Hidalgo
Ingeniería industrial universidad yaca...
Escrito por Fanny Vanessa Verano Hidalgo
el 28/08/2010

NEUROTRANSMISORES

Los neurotransmisores son el producto de síntesis específico por parte de la neurona y que es liberado al medio extracelular en el proceso que se denomina sinapsis, ejerce su acción sobre receptores específicos de membrana que son, lógicamente, diferentes para cada neurotransmisor. Estos receptores específicos de membrana se sitúan tanto en neuronas y otras células efectoras como en la propia neurona de síntesis. Están localizados en el sistema nervioso, si bien su distribución accede a otros tejidos como el muscular y el hormonal. La mayoría de las farmacoterapias que se utilizan en psiquiatría se basan en los mecanismos de acción de los propios neurotransmisores. Por ejemplo, los antidepresivos actúan sobre los receptores de la neurotransmisión serotoninérgica, incrementando por tanto la acción de la serotonina

A partir de la excitabilidad de las neuronas, que es su propiedad específica, se desencadenan distintos tipos de mecanismos que trascienden a la propia neurona y que establecen una clara comunicación entre las mismas. Esto es a lo que denominamos sinapsis, una región celular clara, concreta y muy estructurada definida por el mantenimiento de un espacio interneural, y cuyo significado final es el de la comunicación interneural a la que nos referimos en términos generales como sinapsis eléctrica y sinapsis química. En el primer caso, se habla siempre de una comunicación excitatoria con la continuidad de la conducción de la excitabilidad o el impulso nervioso; en el segundo caso se habla de una comunicación excitatoria o inhibitoria mediada por una sustancia química que no es otra cosa que el neurotransmisor.

La sinapsis es, sin lugar a dudas, la estructura más lábil y accesible a las distintas sustancias químicas como fármacos y drogas y, por tanto, el lugar y término de referencia más importante en los mecanismos de acción de los distintos psicofármacos.

La sinapsis es el proceso esencial en la comunicación neuronal y constituye el lenguaje básico del sistema nervioso. Afortunadamente, las semejanzas de los mecanismos sinápticos son mucho más amplias que las diferencias, asociadas éstas a la existencia de distintos neurotransmisores con características particulares.

Elliot en 1904 fue el primero que sugirió la posibilidad de que la información era transferida de una neurona a otra por la liberación de una sustancia química desde las fibras nerviosas; Loewi es, sin embargo, el primero que mostró la existencia de una sustancia química en el líquido perfundido con la estimulación del nervio vago y fue su colaborador Navratil quien más tarde demostró que esta sustancia era la acetilcolina.

Sinapsis: modelo general. Tomado de Gómez-Jarabo, G. "Farmacología de la conducta

Rodrigo Rafael Rodriguez Rodriguez
Analisis y programación computadores u...
Escrito por Rodrigo Rafael Rodriguez Rodriguez
el 28/03/2011

Fanny buenas tardes:
He estado estudiando algunos articulos que usted tiene en varios secciones de Emagister y los he encontrado faciles de estudiar y con lenguaje sencillo y facil de seguir.
Gracias por sus aportes.
Cordial saludo,
Rodrigo

Fanny Vanessa Verano Hidalgo
Ingeniería industrial universidad yaca...
Escrito por Fanny Vanessa Verano Hidalgo
el 29/08/2011

Hola Rodrigo.

Gracias por la nota. En realidad muchas de las publicacions que he dejado tanto en artículos como en documentos son tal como me los entregan sus autores o los consigo en la web, así se evita la interpretación personal, ya sabes, cada quien ve la realidad desde su perspectiva.


Sin embargo eso no deja que en algunas ocasiones mi toque personal no asome.


Es un honor tener un grupo como este, al que no visitaba por razones que en realidad no son importantes mencionar, lo que si es importante es que aquí estamos